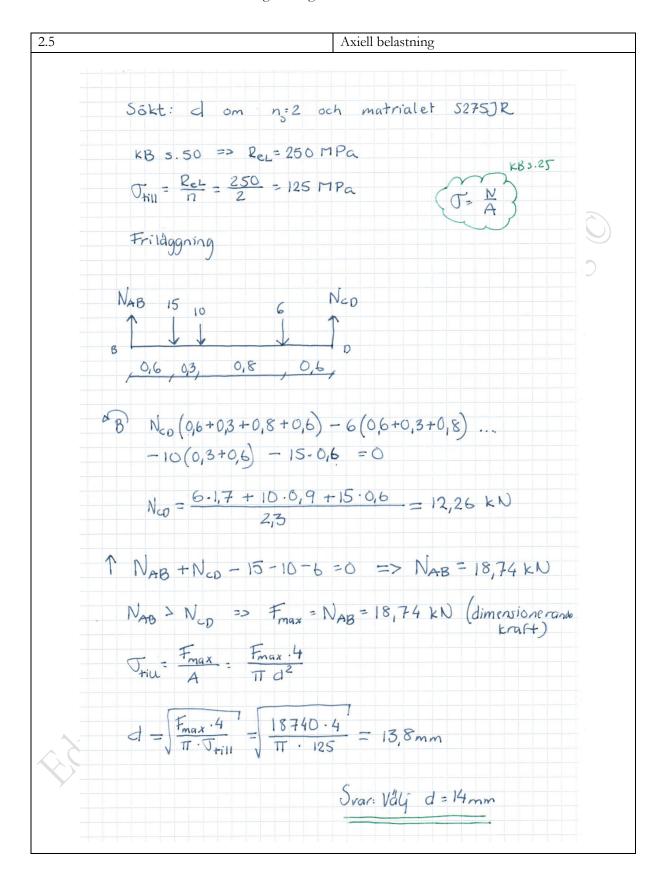

1. Inre krafter och moment

2. Axiell belastning

2.2	Axiell belastning				
	Axiell belastning Frildgg knutpunkt C				
	$\alpha = \arctan\left(\frac{3}{1,5}\right) = 63.4^{\circ}$				
	$ \begin{array}{ccccc} & 1 & CB \sin 63.4^{\circ} - 25 = 0 \\ & CB = 27.95 kN \end{array} $				
	25 kN -> AC+CBcos63,4 =0 AC = -12,52 kN				
	a) $A = 40.4 = 160 \text{ mm}^2$ $\int_{CB} = \frac{CB}{A} = \frac{27.95 \cdot 10^3}{160} = 175 \text{ MPa} \text{ (drag)}$				
	$ \int_{AC} = \frac{AC}{A} = \frac{-12.62 \cdot 10^3}{160} = \frac{-78 \text{ MPa}}{160} (trug) $				
	b) n= Jamförandevärde (5235 s.50 k8) Faktiskt värde { Rel=210 MPa}				
\	$n_s = \frac{R_{cL}}{C_{cB}} = \frac{210}{175} = \frac{1.2}{175} = \frac{210}{175} = \frac{1.2}{175} = $				
	$n_B = \frac{R_m}{T_{cB}} = \frac{360}{175} = 2.05$ broth				


EduME – Education and Mechanical Engineering $\mathbb O$

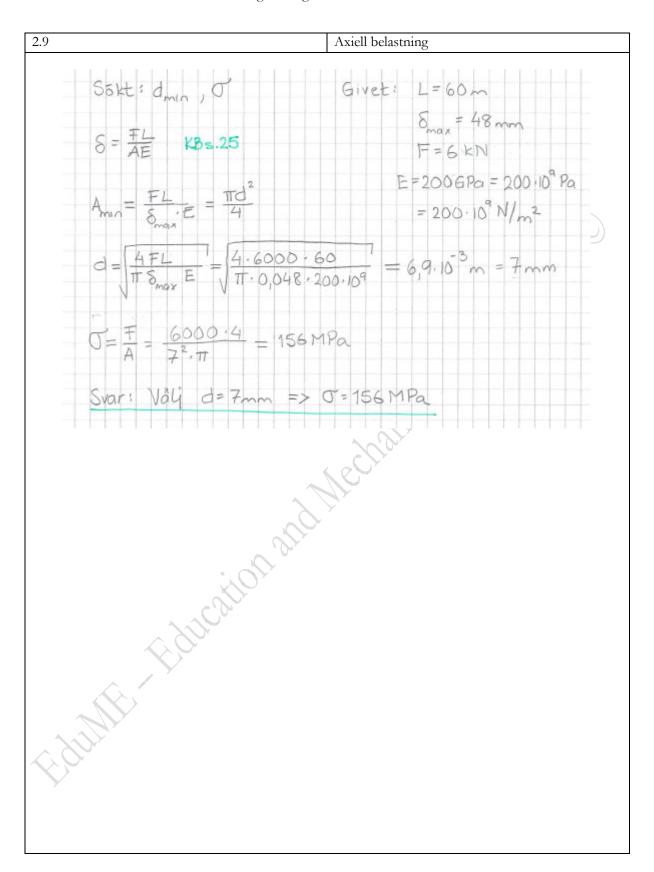
, 56kt: b	Givet:
Bestan kraften i	BC Uniu = 150 MPa
Frilâgg:	nu sorra
BC < 108 40	okN .
450 sin	55°
Ax Ay	
650 co s 55°	
A BC.450 sin 55° - 40).650 cos 55°=0
BC = 40,46 KN	
$\sigma_{\text{Hill}} = \frac{BC}{t \cdot b} => b =$	BC = 40460 = 45mm
dilli	

2.4	Axiell belastning	
	Dokt: dee, nas	
	Krafterna i AB = BC måste beståmmas.	
	Knut punkt G	
	BC 1 Basina Joker and ast 86	20
	DC 1 BC sin34,7 - 80 =0	
	30 kN BC = 49,06 kN	
	Knutpunkt B	
	AB CB = 49,06 KN	
	BD CB = 49,06 KN	
	Soker endast AB - AB - 49,0651155,3 = 0	
	AB = 40,33 kN	
	Beståm July for AB	
	JHU = 55.103.4 = 121,6 MPa = 120 MPa	
	JAB = AB - 40,33.103.4 = 89 MPa	
	$n_{AB} = \frac{\sigma_{HY}}{\sigma_{AB}} = \frac{120}{89} = 1.35$	

EduME – Education and Mechanical Engineering $\mathbb O$

2.4 fortsättning	Axiell belastning
5) Jec=	JAB = 89 MPa
J _{8C} =	$\frac{BC}{A_{8C}} = \frac{49,06 \cdot 10^{3} \cdot 4}{17 d^{2}} = 89$
d=	49,06·10 ³ ·4 = 26,5 mm = 27mm
	and Mechanical Francisco
	1 Cition or
Egille	

EduME – Education and Mechanical Engineering $\mathbb O$

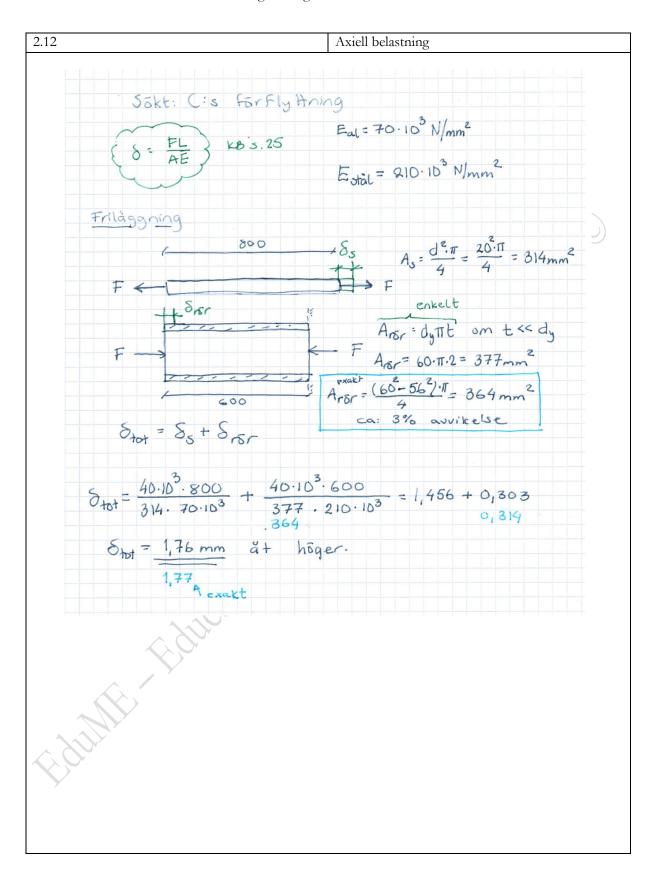

2.6	Axiell belastning	
	Sökt: X då dragspånningen stången (d) lika stor som tryckspånningen i fyrkantsotaven	
	$d=18mm \implies A_{40} = \frac{\pi \cdot 18^2}{4} = 255mm^2$	
	$a \times a = 25 \times 25 \text{mm} A_{co} = 25^2 = 625 \text{mm}^2$	
	Fri läggning AB 4kN T X	50
	300 300	
	$\uparrow AB+CD-4=0$ $CD=4-AB$ (1)	
	3^{2} $4x - 300 \cdot CD = 0$ (2) Spanningsvillkor	
	$ \mathcal{T}_{AB} = \mathcal{T}_{CD} $	
	$\frac{AB}{A_{AB}} = \frac{CD}{A_{CO}} \implies CD = \frac{A_{CO}}{A_{AB}} \cdot AB = \frac{625}{255} \cdot AB = 2,45 \cdot AB$	
	$(1) \Rightarrow 2,45 AB = 4 - AB$ $AB = \frac{4}{2,45 + 1} = 1,16 kN$.	
	(2)	
	J= 1160 = 4,55 MPa J= 255 = 4,55 MPa OK!	

	ll belastning
n även ta krafterna från uppgift 2.1	
Sökt: a) SAC b) SB	
J AC J OB	E=70 GPa
R M A R O B C	104.4
Beståm krafterna AB º BC	
↑ 16	ES=FL
1 NBC-10=0	
1 1 BC 10 = 0	
NBC = 10 KN	
N _{BC}	Tvårsnitt
10	$A_{BC} = \frac{12^2 \cdot \Pi}{4} = 113 \text{ mm}^2$
Ţ.,	
3 3 NAB + 2.3 - 10 = 0	$A_{AB} = \frac{11}{4} \left(50^2 - 46^2 \right) = 302 \text{mm}^2$
NAB = 10-6 = 4KN	alternativ for tunn-
Ly .	A=omkreto x tjocklek.
N N	Aps=48.TT2 = 302mm2
N _{AB}	196 1011 - 002mm
$S_{AC} = S_{AB} + S_{BC} = \frac{4000.700}{302.70.10^3}$	<u>+ 10000 · 1500</u> _
) OAC OAB BC 302.70.103	113.70.103
= 0,1325 + 1,8963 = 2,0	3mm (långre)
b) SB= SAB = 0,13 mm uppåt.	
2	

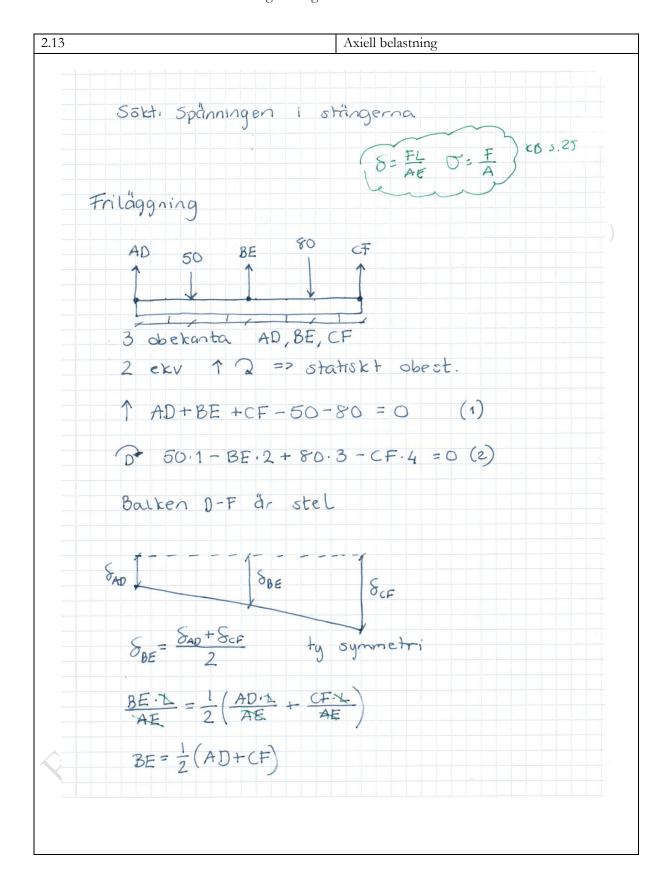
EduME – Education and Mechanical Engineering $\mathbb O$

			Ax	iell belastning	
KE	25.25	$G: \frac{F}{A}$ $G = E \cdot g$. ?		
σ:	F:4 =	δ= L·ε		(1)	Enheter
kg	/m = p.	,		(2)	8= L. = (3)
	(1)	ks/m3	(2)	GPa E	(3) 5 mm
ota (8,5 mm	7850	0,45	210	1,71 mm
AL	14 mm	2700	0,416	70	1,86 mm
Cu	11,6 mm	8930	0,94	120	1,58 ~~
Vät	alum	0 11	=> 0,4	12 kg/m	9 8 = 1,86mm

EduME – Education and Mechanical Engineering ©

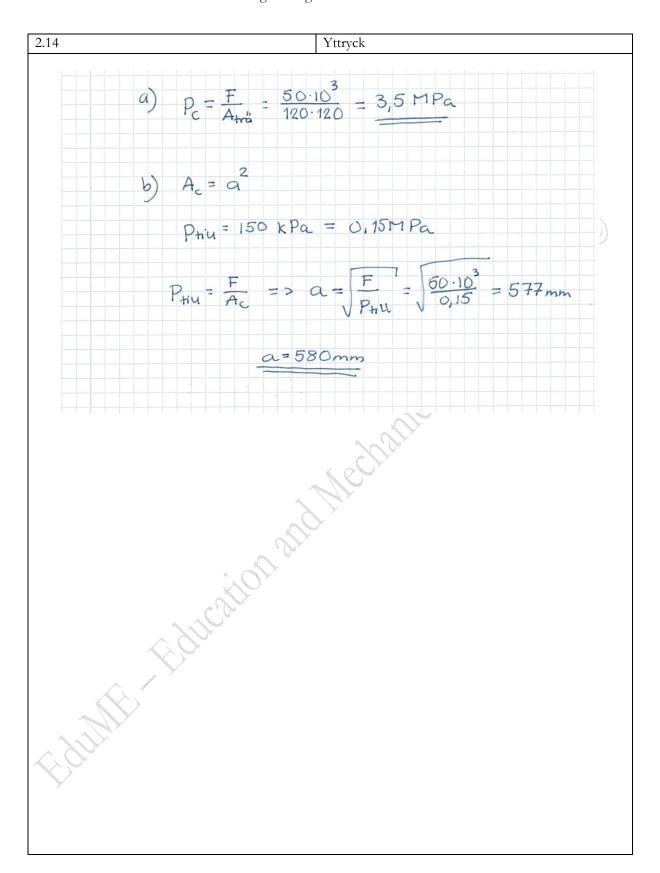

EduME – Education and Mechanical Engineering $\mathbb O$

2.10	Axiell belastning
Sākti d samt E	1% Givet: F=10N
J 7.4	E = 2,8 GPa
T+14 = 7.4	544=40MPa=40N/mm
$d = \begin{bmatrix} 10.4 \\ 40.17 \end{bmatrix} = 0.5$	64 mm
16.	
vay a=yomm	$=> 0 = \frac{10.4}{11.06^2} = 35.4 MPa$
Hooks lag KB. s.2	4 6
$O = E \cdot E = 3$	5,4.10 = 0,0126 => 1,26%
	Svar. d= 0,6mm
	E = 1,26%
	OTIC.
7	


EduME – Education and Mechanical Engineering $\mathbb O$

		Axiell belast	ning
Saxt:	dmin	Giveti	F=11N
V \ \	\ h.		E= 3,1 GPa
Kontroller	a om tojning		J = 40 MPa
eller spo	anning ar dimens	sionerande.	E = 1% = 0.01
Hooks (a)	g: 0= E.E		max
		C	40.10
Chu Om	tiu Torra	+1U = E =	40.10 = 0,0129 =>1,3%
Om spå	nongen år 40 M	Pa får vi	täjningen 1,3%
men er	dast 8=1% år	tillåten =	=> tojningen
ar dim	ensionerande.		
Bestám	spanning som	ger 1%	taining.
0 = E	Emax = 172		
aim	max II amin		
d =	4F = 4.1 E Emax IT = 3,1.10°	1	0.672mm
V V	E Emax 17 3.1.10	.0,01.11	
		Sval	r: dmin = 0,672 mm
			min
A			
Apr.			

EduME - Education and Mechanical Engineering ©


EduME - Education and Mechanical Engineering ©

 $\operatorname{EduME}-\operatorname{Education}$ and Mechanical Engineering ${\mathbb C}$

3 fortsättning	Axiell belastning
(1) $AD + CF. + BE = 130$	
(2) $2BE + 4CF = 290$	
(3) 2BE = AD +CF	
(1) 2 (3) -> 7 BF + B	E = 130 => BE = 43,3 KN
	_ , , , , , , , , , , , , , , , , , , ,
(2) = > 2.43,3 + 4 c	= 290 = CF = 50,8 kN.
(1) = > AD = 130 - 43,3	-50.8 = 35.9 kN
$A = \frac{11.18^2}{4} = 255 \text{ mm}^2$	
3	
$\int_{AD} = \frac{35,9 \cdot 10^3}{255} = 141 \text{F}$	1Pa
422153	
) MPa
50 8 103	
JCF = 50,8.10 ³ - 19	19 MPa
7	

EduME – Education and Mechanical Engineering ©

