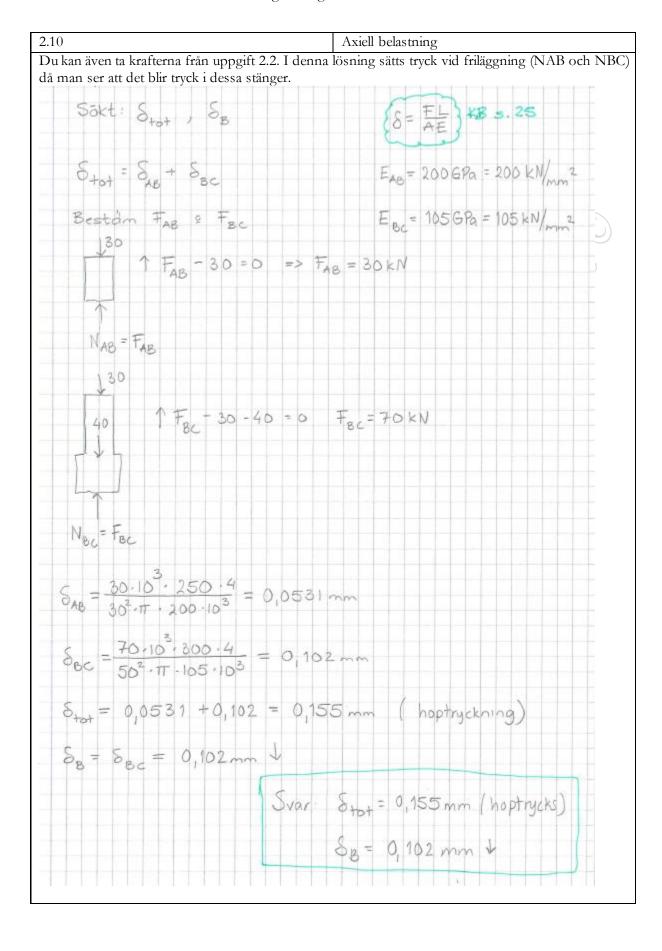
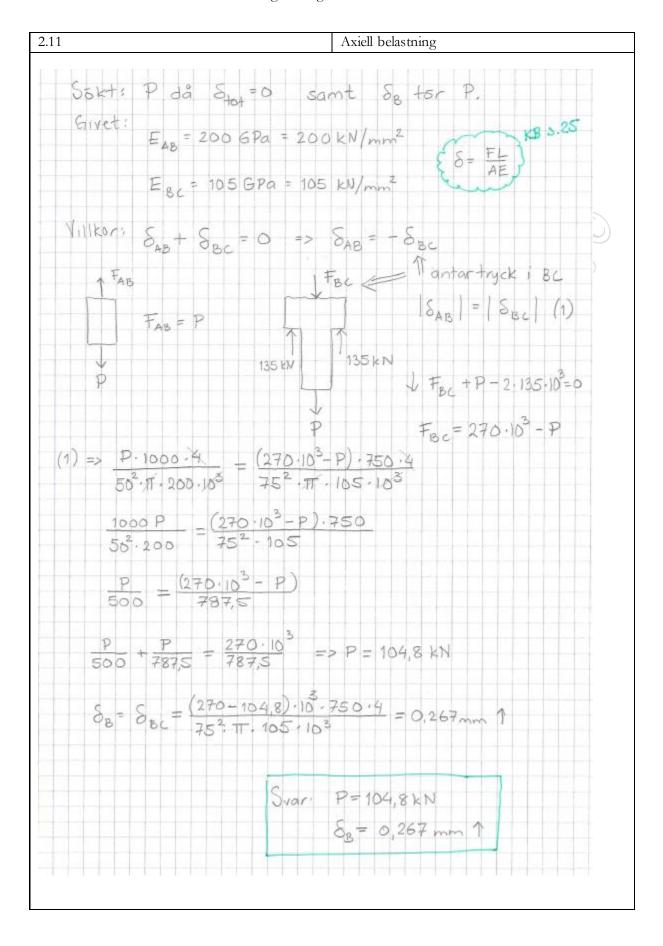

2. Axiell belastning och yttryck

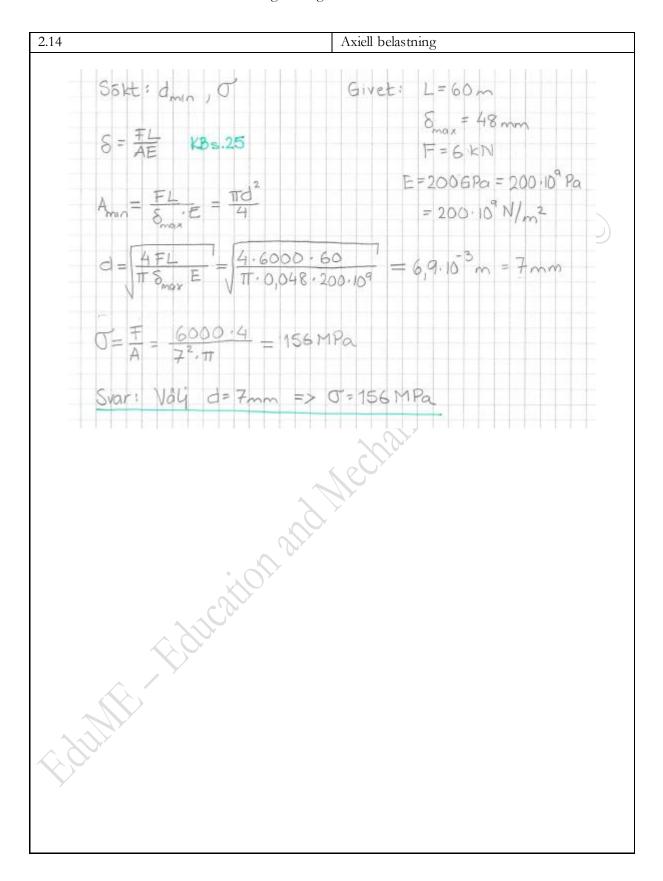
2.3 Axiell belastning 120 KN

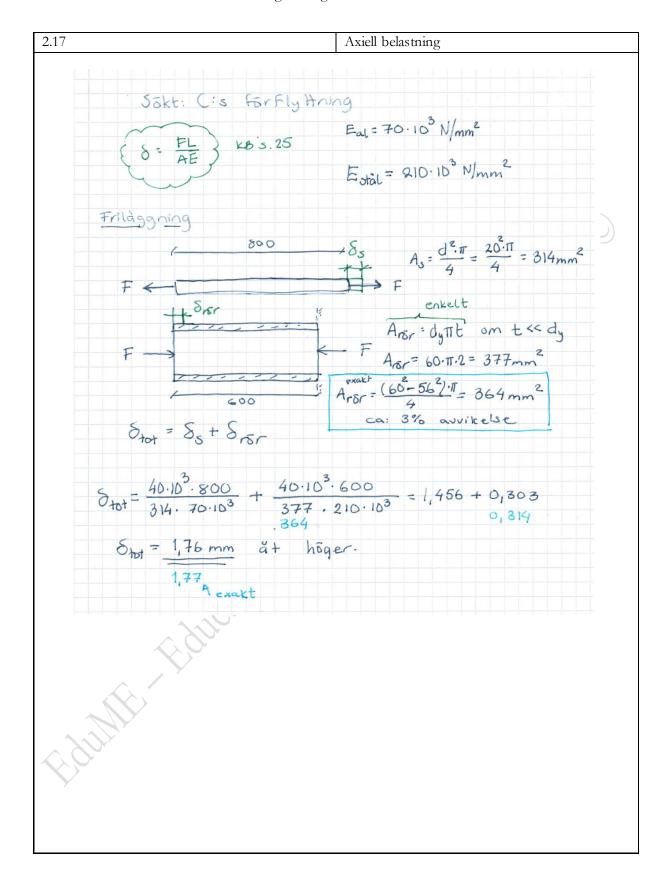

	Axiell belastning
Axi	Tell belastning $G = \frac{N}{A}$
Fr	ildgg knutpunkt C
CBsi	x = amtra (3) = (34°
	1 (Bsin63,4°-25=0
	CBCOSX CB = 27,95 kN
2	5KN -> AC+CBcos63,4 =0
	AC = -12,52 kN
	$A = 40.4 = 160 \text{ mm}^2$ $C_B = \frac{C_B}{A} = \frac{27.95 \cdot 10^3}{160} = 175 \text{ MPa} \text{ (drag)}$
0	$Ac = AC = \frac{-12.52 \cdot 10^3}{160} = \frac{-78 \text{ mPa}}{160} \text{ (tryck)}$
b)	n= Jâmfôrandevärde (5235 s.50 kB) Faktiskt várde (Rel=210 MPa)
	$n_s = \frac{R_{cL}}{\sigma_{cB}} = \frac{210}{175} = \frac{1.2}{175}$ permanents
	$n_B = \frac{R_m}{T_{cB}} = \frac{360}{175} = 2.05$ broth


		Axiell b	pelastning	
, 5	okt: b		Givet:	
	rilâgg:	BC	t=6mm Triu=150MPa	
	BC < 100 40	OkN		
Ā	450 sin	155°		
A	BC · 450 sin 55° - 40	0.650 0	os 55°=0	
	BC = 40,46 KN			
THIN	$= \frac{BC}{t \cdot b} \implies b =$	BC =	40460 = 45 mm	

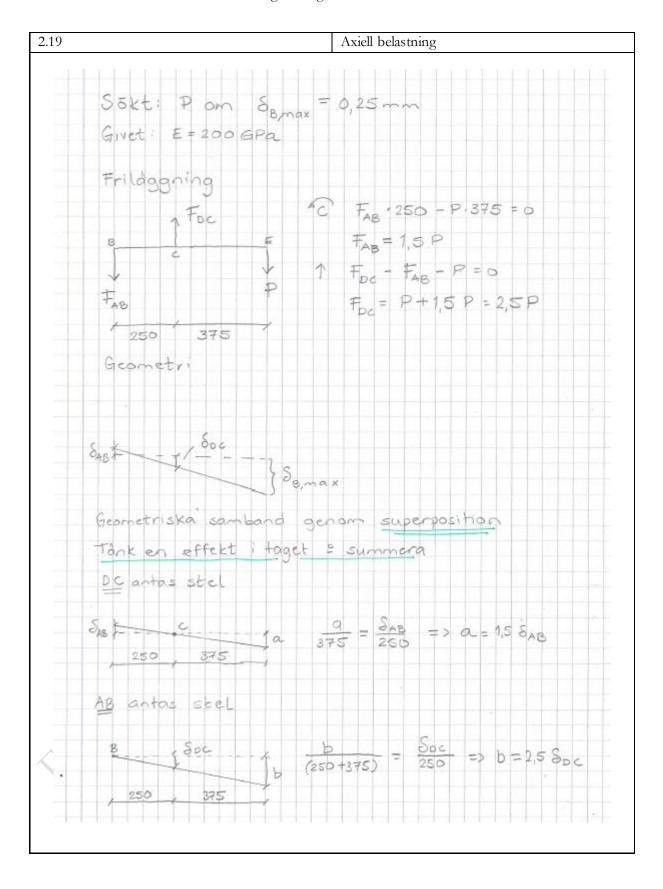
2.7	Axiell belastning
	Sökt: NAB , dBE
	Krafter i AB º BC måste beståmmas.
	Knutpunkt a
	BC BCSINQ Q=arctan (900) = 34.7°
	DE] \$ 30-BCsina = 0
	DCGSX 30 BC = 52,70 kN.
	Knutpunkt B
	A8
	$AB = BC\cos\alpha = 0$ $AB = 52.70 \cdot \cos 34.7^{\circ} = 43.3 \text{ kV}$
	a) nab Abmar = 55 = 1,27 = 1,2 (avrunda nedát)
	b) jámnstarka => JAB = 08c
	JAB = 43,3.183 . 4 = 52,7.183 4.
	$a = \begin{bmatrix} 52.7 \\ 43.3 \end{bmatrix} \cdot 24^{27} = \begin{bmatrix} 52.7 \\ 43.3 \end{bmatrix} \cdot 24 = 26.5 \text{ mm} = 27 \text{ mm}$

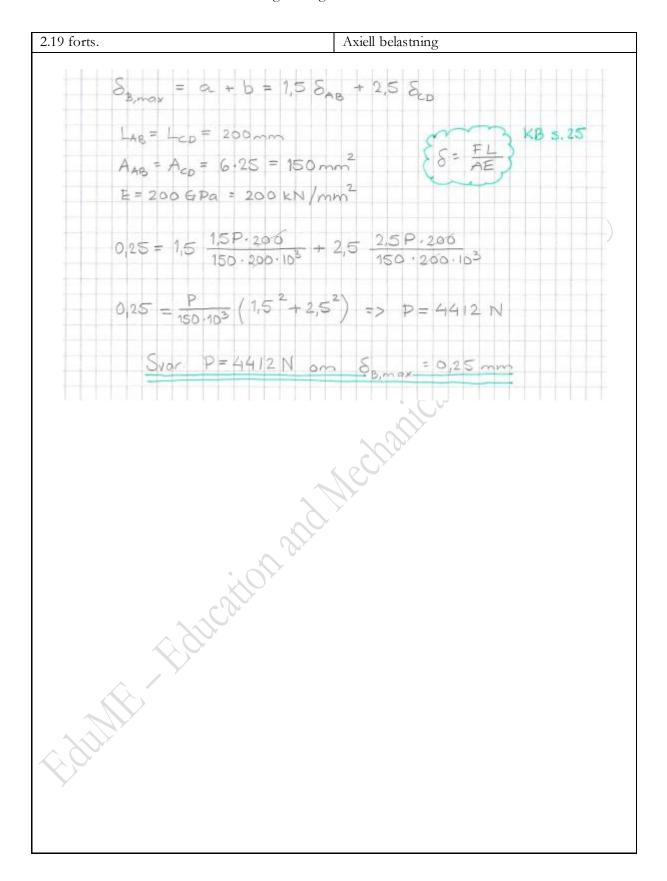
2.8	Axiell belastning
	Sökt: d om n=2 och matrialet S275JR
	$V_{\text{HII}} = \frac{R_{\text{eL}}}{n} = \frac{250}{2} = 125 \text{ MPa}$ $V_{\text{HII}} = \frac{R_{\text{eL}}}{n} = \frac{250}{2} = 125 \text{ MPa}$ $V_{\text{HII}} = \frac{N}{A}$
	Frildggning
	NAB 15 10 6 NCD B 0,6 03, 0,8 ,0,5
	$ N_{co}(0,6+0,3+0,8+0,6) - 6(0,6+0,3+0,8) $ $ -10(0,3+0,6) - 15\cdot0,6 = 0 $
	$N_{c0} = \frac{6 \cdot 1.7 + 10 \cdot 6.9 + 15 \cdot 0.6}{2.3} = 12,26 \text{ kN}$
	1 NAB + NCO - 15-10-6 =0 => NAB = 18,74 KN
	NAB = NCD => Fmax = NAB = 18,74 kN (dimensionerando kraft) Tiu = Fmax = Fmax : 4 TT d ²
	$d = \sqrt{\frac{F_{max} \cdot 4}{\pi \cdot \nabla_{till}}} = \sqrt{\frac{18740 \cdot 4}{\pi \cdot 125}} = 13.8 mm$
_	Svar: Välj d = 14mm


2.9	Axiell belastning	
	Sökt: X då dragspånningen stången (d)	
	lika stor som tryckspånningen i Fyrkantsotaven	
	$d = 18 \text{ mm} \implies A_{AB} = \frac{\pi \cdot 18^2}{4} = 255 \text{ mm}^2$	
	$a \times a = 25 \times 25 \text{ mm}$ $A_{CO} = 25^2 = 625 \text{ m}^2$	
	Frilaggaing	
	AB 4KN	30
	1 cp	
	, 300	
	1 + AB + CD - 4 = 0 + CD = 4 - AB (1)	
	3 4x - 300 · CD = 0 (2)	
	Sodoniao Svillko-	
	Spanningsvillkor	
	JAB = JCD	
	$\frac{AB}{A_{AB}} = \frac{CD}{A_{CD}} \Rightarrow CD = \frac{A\omega}{A_{AB}} \cdot AB = \frac{625}{255} AB = 2,45 AB$	
	(1) => $2.45AB = 4 - AB$ $AB = \frac{4}{2.45 + 1} = 1.16 kN$.	
	CD=2,45·1,16-2,84 KN	
	(2) $X = \frac{300 \text{ CD}}{4} = \frac{300 \cdot 2,84}{4} = 213 \text{ mm}$	
	J== 1160 = 4,55 MPa	
	J. 2840 - 4,55 MPa OK!	


2.12 Axiell belastning Du kan även ta krafterna från uppgift 2.1 Sokt: a) SAC b) SB E=70 GPa Beståm krafterna AB º BC 1 NBC-10 =0 NBC = 10 KN Trarsnitt $A_{BC} = \frac{12^2 \cdot \Pi}{4} = 113 \text{ mm}^2$ 1 NAB + 2.3 - 10 = 0 AAB = TT (502-462) = 302 mm2 NAB= 10-6 = 4KN alternativ for tunn-väggigt rör A=omkreto x fjocklek. Aps=48TT2 = 302mm2 a) SAC = SAB + SBC = 4000.700 + 10000.1500 = = 0,1325 + 1,8963 = 2,03mm (langre) b) S= SAB = 0,13 mm uppat

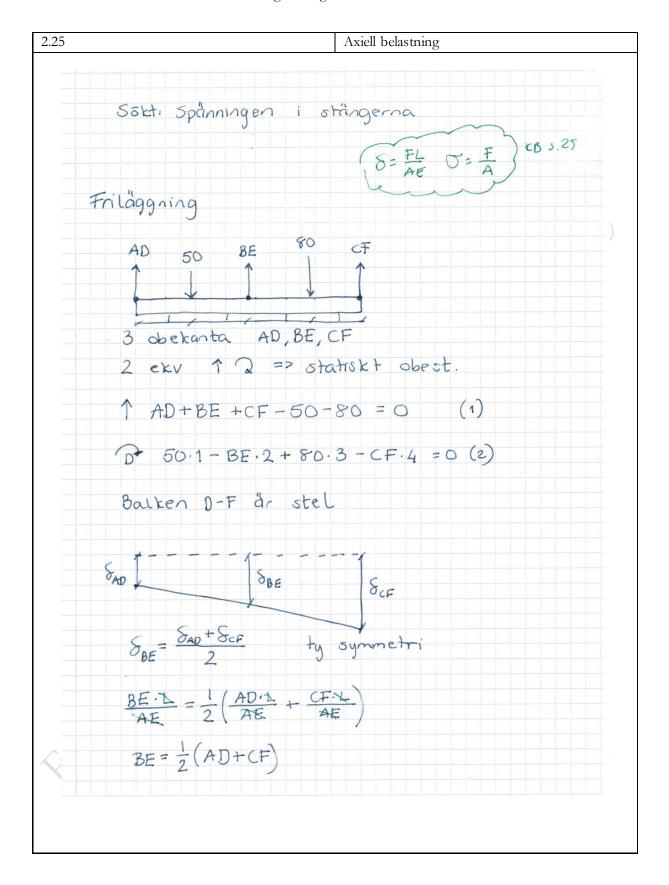
Eva	5.25	F	3		
1		T: FA			
1	1	0 = E . 8	= 5		
	1	8 = T.8			
σ=	F 4 πα =	> d=	4F	(1)	Enter
	па		1110	()	1
k9	/m = p.	A = p. 1	Id ²	(2)	S= L. (3)
		k5/m3	kg/m	, GPa	(3)
	(1)	k5/m3	(2)	E	mm
otă L	8,5 mm	7850	0,45	210	1,71 mm
AL	14 mm	2700	0,416	70	1,86 mm
Cu	11,6 mm	8930	0,94	120	1,58 mm
Välj	alum	milion	=> 0,4	2 kg/m	9 8 = 1,86mm
	1.1	300			
	(1) ju				
	/				
	>				
D.	alum				
<i></i>					




2.15	Axiell belastning	
	Sakt: d samt & 1% Givet: F=10 N	
	$T_{+u} = \frac{7.4}{\pi d^2}$ $T_{+u} = \frac{40N}{ma}$	
	$d = \sqrt{\frac{10.4}{40.17}} = 0.564 \text{ mm}$	
	Vay d = 9,6 mm => 0= 10.4 = 35,4 MPa	
	Hooks lag KB. s.24 $C = E \cdot E \Rightarrow E = \frac{35.4 \cdot 10^6}{2.8 \cdot 10^9} = 0.0126 \Rightarrow 1.26\%$	
	Svar: d= 0,6mm E = 1,26%	
	Svar. d= 0,6mm E=1,26% Aller	

	Axiell belastning
Sakt: dmin	Givet: F=11N
Kontrollera om toljning eller spånning år dimensio	E = 3,1 GPa Thu = 40 MPa nerande. Emax = 1% = 0,01
Hooks lag: 0= E/E	
Etu on Thu=40 MPa Etic	$\chi = \frac{0.06}{E} = \frac{40.06}{3.1.109} = 0.0129 \Rightarrow 1.3\%$
Om spånningen år 40 MPa men endast 8=1% år t	
är dimensionerande.	
Bestám spánning som go Odm = E. Emax = F.A IIdmin	er 1% täjning.
amin = \(\frac{4}{E} \) = \(\frac{4}{3,1.10^9} \) = \(\frac{3}{3,1.10^9} \) = \(\frac{11}{3,1.10^9} \)	Svar: d _{min} = 0,672 mm

2.18		Axiell belastning
	Sokt of , S, , S,	Givet:
	(8 = FL) KB s. 25	Stigning P=1,5mm 1/4 varv => 8 + 1,5 4
	· Roret dras ut. · Stången trycks ihop.	Eal = 70KN/mm ² Em = 105 kN/mm ²
	· Rör och stång påverkas Frildgg lock Friedgg lock	
	₹ ₃ → ·	$\Rightarrow \mp_s = 2 \cdot \frac{\mp_r}{2} \Rightarrow \mp_s = \mp_r = \mp$
	Kraften lika => senekopplace Stot = 18-1+ 18-1	1. Anta ror => stelt
	$\frac{1.5}{4} = \frac{P \cdot 250 \cdot 4}{(86^2 - 28^2) \cdot \Pi \cdot 70 \cdot 10^3} + \frac{P \cdot 250 \cdot 4}{25^2 \pi \cdot 10^3}$	hos stången 105·10 ³ 2. Anta stång stel
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$P = 27310 N$ $0_{s} = \frac{27310.4}{25^{2} \cdot n} = 55.6 MPa$	3. Delay Stot går Hul att draut röret restentiu
<	$S_{s} = \frac{FL}{AE} = 0; \frac{L}{E_{m}} = 55,6 \cdot \frac{250}{105 \cdot 10^{3}} = 0$ $O_{r} = \frac{27310 \cdot 4}{(36^{2} - 28^{2}) \cdot \pi} = 67,9 \text{ MPa} (0)$	
	8=0, = 67,9. 250 70.103 = 0,24	3mm .
	Svar: 05=55,6 MPa (drag) Ss=	


	Axiell belastning
S	5kt: TAL, J
1 6	ivet: Eal = 70 6Pa = 70 KN/mm2
	Em = 105 GPa = 105 kN/mm²
	at = 8 = 8 samma deformation for alla
	naterial delar => analogi med parallell - opplade fjädrar.
	Special P
	Deformation lika for
	K, \$ K2\$ K3\$ alla fiàdrar.
	Kraft olika P fordelas
	1p · over fjádrama P=P1+P2+P3
C.	KB.525
60	$=\frac{FL}{AE} = F = \frac{SAE}{L}$ $Aa = A_m = A + 5/30 = 150mm^2$ $Lal = L = 250mm$
	p = SAal Eal .2 + SAmEn = SA (2 Eal + Em)
	tal to
	30,10 = 8.150 (2.70 + 105).163
	$S = 0.204 \text{ mm} \Rightarrow F_{a(} = \frac{0.204 \cdot 150 \cdot 70.10^{3}}{250} = 8571 \text{ N}$
	250
	Fm = 30000 - 2.8571 = 12.857N
	Ogl = 8571 = 57,1 MPa (tryck)
	al = 150 + 57, 1918a (Myck)
	750

2.21	Axiell belastning
	Sôkt = 8, Jai, Js (8= #L) KB. 525
	S lika for komposit stängen Givet: P = Fs + Fal Fal = 70 GPa
	P= 8AsEs + 8 Aal Eal Es=200 GPa L= 250mm
	$P = \frac{8}{250} \left(\frac{\pi}{4} 25^{2} \cdot 200 \cdot 10^{3} + \frac{\pi}{4} (64^{2} - 25^{2}) 70 \cdot 10^{3} \right) A_{s} = \frac{25^{2} \cdot \pi}{4}$
	$180 \cdot 10^{3} = \frac{8 \cdot 17 \cdot 10^{3}}{4 \cdot 250} \left(25^{2} \cdot 200 + \left(64^{2} - 25^{2}\right) \cdot 70\right) A_{al} = \frac{17}{4} \left(64^{2} - 25^{2}\right)$ $8 = 0.156 \text{mm}$
	F-8.E O=E.E]
	$O_{s}^{2} = \frac{0.156}{250} \cdot 200 \cdot 10^{3} = 125 \text{ MPa} \text{ (tryck)}$
	Oal = 0,156 . 70.103 = 43,7 MPa (tryck)

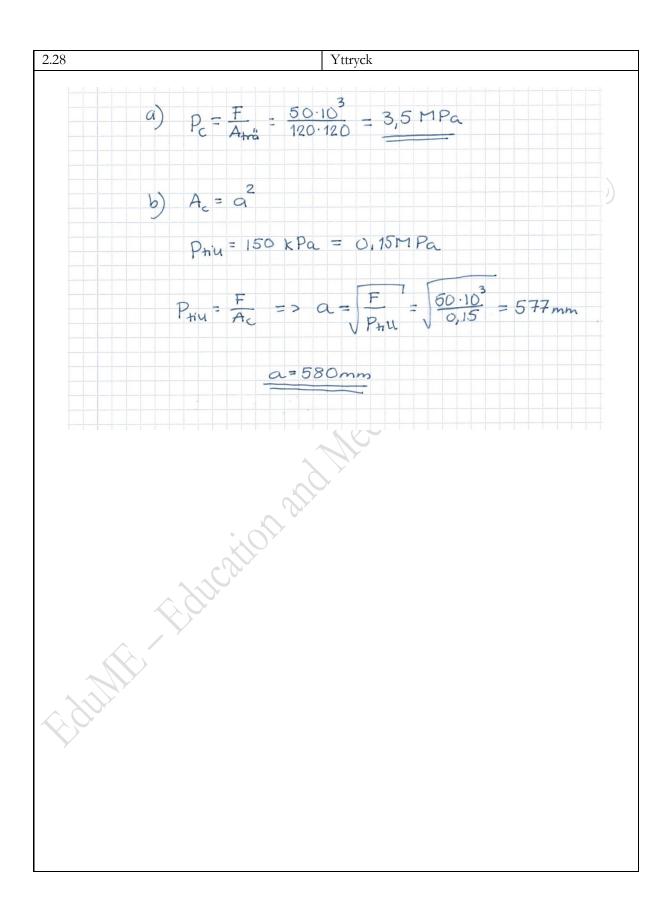
2.22	Axiell belastning
	S5kt; NA, NE, Sc Givet: Es = 200 GPa = 200 KN/mm ² Em = 105 GPa = 105 KN/mm ²
	Frillaggining Es C Em 40 8 + AE 180 120, 100, 100
N	$-N_A - 60 - 40 + N_E = 0 (1)$ $2 \text{ obekanta } 1 \text{ ekv} \Rightarrow \text{ ey } 16 \text{ sbart} \Rightarrow \text{ fler villkor krisis}$ $S_{AB} + S_{BC} + S_{CD} + S_{DE} = 0$ $A \leftarrow D \Rightarrow T_{AB} T_{AB} = N_A D \Rightarrow T_{BC} T_{BC} = N_A - 60$
	$N_A \leftarrow \longrightarrow 60 \longrightarrow F_{CO} \implies F_{CO} = > F_{CO} = N_A - 60$ $C \longrightarrow F_{CO} \implies F_{CO} = > F_{CO} = N_A - 60 - 40 = N_A - 100$
	$ \frac{N_{A} \cdot 180}{200 \cdot 20^{2} \cdot 17} + \frac{(N_{A} - 60) \cdot 120}{200 \cdot 20^{2} \cdot 17} + \frac{(N_{A} - 60) \cdot 100}{105 \cdot 15^{2} \cdot 17} + \frac{(N_{A} - 100) \cdot 100}{105 \cdot 15^{2} \cdot 17} = 0 $ $ \frac{N_{A} \cdot 180}{200 \cdot 20^{2}} + \frac{N_{A} \cdot 120}{200 \cdot 20^{2}} + \frac{N_{A} \cdot 100}{105 \cdot 15^{2}} + \frac{N_{A} \cdot 100}{105 \cdot 15^{2}} = \frac{60 \cdot 120}{200 \cdot 20^{2}} + \frac{60 \cdot 100}{105 \cdot 15^{2}} $ $ N_{A} \left(\frac{300}{200 \cdot 20^{2}} + \frac{200}{105 \cdot 15^{2}}\right) = \frac{60 \cdot 120}{200 \cdot 20^{2}} + \frac{100 \cdot 100}{105 \cdot 15^{2}} $ $ N_{A} \left(\frac{300}{200 \cdot 20^{2}} + \frac{200}{105 \cdot 15^{2}}\right) = \frac{60 \cdot 120}{200 \cdot 20^{2}} + \frac{100 \cdot 100}{105 \cdot 15^{2}} $
~	$\begin{aligned} N_{A} &= 62,79 \text{ kN} &=> (1) => N_{E} = 100 - 62,79 = 37,21 \text{ kN} \\ S_{C} &= S_{AB} + S_{B}, \\ S_{C} &= \frac{F_{AB} \cdot 180}{200 \cdot 10^{3} \cdot 20^{2} \cdot \pi} + \frac{F_{BC} \cdot 120}{200 \cdot 10^{3} \cdot 20^{2} \cdot \pi} = \frac{1 \cdot 10^{3}}{200 \cdot 10^{3} \cdot 20^{2} \cdot \pi} = \frac{62,79 \cdot 180 + 2,79 \cdot 120}{200 \cdot 10^{3} \cdot 20^{2} \cdot \pi} \\ F_{AB} &= N_{A} = 62,79 \text{ kN} \qquad F_{BC} = N_{A} - 60 = 2,79 \text{ kN} \end{aligned}$
	S_= 0,0463mm

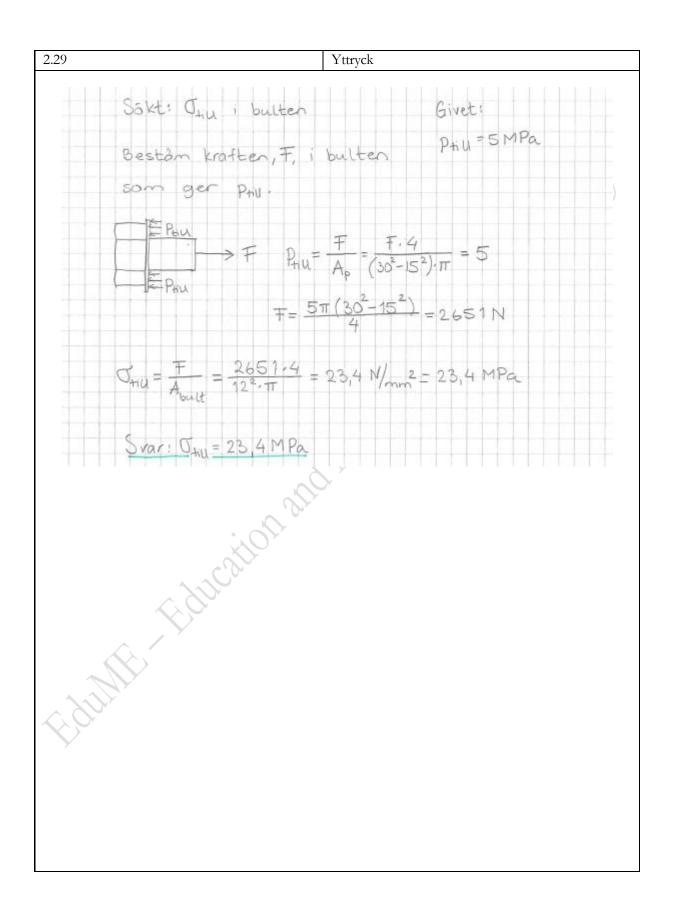
23	Axiell belastning
Sakt	: NA, No, Sec
Girlet	: Dy = 32mm E = 103GPa
	Di = 26 mm P = 190 kN Q = 160 kN
Frild	ggning
1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
N _A	18. S. C. S.
	2 obekanta, 1 cku di lasbart
OAB	$+ \delta_{8c} + \delta_{co} = 0$ (2) $(8 - \frac{FL}{AE}) \times 8.525$
N _A ->	F> NAB => NAB =- NA
N →	
NA -> <	> No Nco = P-Q-NA = 190-160-NA -30-NA
(2) =>	- NA 100 + (90 - NA) 100 + (30 - NA) 100 - 0
	$-N_A + 190 - N_A + 30 - N_A = 0 = > N_A = \frac{220}{3} = 733 \text{ kN}$
(1) =	> ND = NA - 30 = 73,3 - 30 = 43,3 kN
\$	$88c^{\frac{1}{2}} = \frac{N_{BC}L}{AE} = \frac{(190 - 73.3) \cdot 10^{3} \cdot 100 \cdot 4}{(32^{2} - 26^{2}) \cdot 11 - 103 \cdot 10^{3}} = 0.414 \text{ mm}$
Y	

2.24	Axiell belastning
	Sakt: NA, NE, Sc
	Givet 1 Es = 200 6 Pa SE = 0,12mm
	Em = 105 GPa
	Steg 1: Beståm Stot om högra väggen inte finns.
	Steg 2: Bestan NE son krávs for a H &= 0,12mm
	drs NE trycker Hubaks Stat - SE
	1 Stor = SAB + SBC + SCD + SDE SDE = O ty Obelastad
	Frilaggning => NAB = 100 KN NBC = 40 KN
	(eller insikt) Nep = 40 kN
	$S_{10} = \frac{100 \cdot 10^{3} \cdot 180 \cdot 4}{200 \cdot 10^{3} \cdot 40^{2} \cdot \pi} + \frac{40 \cdot 10^{3} \cdot 120 \cdot 4}{200 \cdot 10^{3} \cdot 40^{2} \cdot \pi} + \frac{40 \cdot 10^{3} \cdot 100 \cdot 4}{105 \cdot 10^{3} \cdot 30^{2} \cdot \pi} = 0.1446$
	(2) Säter = 0,1446-0,12 = 0,0246 mm
	$\frac{N_{E} \cdot (180 + 120) \cdot 4}{200 \cdot 10^{3} \cdot 40^{2} \cdot \pi} + \frac{N_{E} (100 + 100) \cdot 4}{105 \cdot 10^{3} \cdot 30^{2} \cdot \pi} = 0,0246$
	$\frac{4! \text{NE}}{10^3 \cdot \text{m}} \left[\frac{300}{200 \cdot 40^2} + \frac{200 \cdot }{105 \cdot 30^2} \right] = 0.0246 \implies \text{NE} = 6327 \text{N}$
	103.17 [230.43 105.30]
	MA
	Sc= SAB+ SBC= 93,7.103.180.4 + 33,67.103.120.4 = 0,083 mm
A	
	NAB = NA = 93,7 kN NBC = 93,7 -60 = 33,67 KN
	93,7 4 -> 3-> Noc
	60

2.25 fortsättning

Axiell belastning


$$(2) = > 2.43,3 + 4 \text{ CF} = 290 = > \text{ CF} = 50,8 \text{ kN}.$$


$$A = \frac{11.18^2}{4} = 255 \text{ mm}^2$$

$$\int_{AD} = \frac{35.9 \cdot 10^3}{255} = 141 \text{ MPa}$$

6	Axiell belastning
Sokt: NA, NB, 1	Vc, Np
Sx ,88,	Se, Es Symmetri
	$N_A = N_D S_A = S_D$
N .	
NA NB NC	$N_{B} = N_{C} S_{B} = S_{C}$
	$1 2N_A + 2N_B = 2$
2 KTV	$N_A + N_B = 1 => N_B = 1 - N_A$
9	ar stel och Krafterna (NA No)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	iska kring lasten kommer
8A = 8B =	0c 7 0p
8 = 8 =>	$\frac{N_A(125+150)^{24}}{70.10^{5} \cdot 2.5^{2} \cdot \pi} = \frac{(1-N_A) \cdot 150 \cdot 4}{200.10^{5} \cdot 2^{2} \cdot \pi}$
OA 98	
	$\frac{N_A \cdot 275}{70 \cdot 2.5^2} = \frac{(1 - N_A) \cdot 150}{200 \cdot 2^2}$
	70.2,52 200.22
	$N_4 \left(\frac{275}{70.25^2} + \frac{150}{200.4} \right) = \frac{150}{200.4}$
	$N_A = 0.230 \text{ kN} = 230 \text{ N} = N_D$
	$N_B = 1 - 0.230 = 0.770 \text{kN} = 770 \text{N} = N_C$
s _ 230 (125	+150)4 - 0 101
OA 70.103	+150),4 = 0,184mm = 8B
Kontrollera	att 88=0,184mm
	S= 770.150.4 = 0,184mm OK!!

	Axiell belastning
Sokt: NBC, N	IDE , SA
Gvet: P = 2,5	kN
tvársn	tt 12×6 mm E=200 GPa
BC & DE år	två kraftskroppar (lånkar) tar
endast upp	drag / tryck
Frildggning:	
$\longmapsto P$	4 obekanta = 3 exvationer 1 = 12
	=> ej 10sba-t
NBC <	F P.200 - NBC 100 - NDE 50 = 0 (1)
K-N _{DE}	
	200P = 100.2,5N _{DE} + N _{DE} .50
Geometri	$N_{DE} = \frac{200 \cdot 2.5}{250 + 50} = \frac{1.67 \text{kN}}{250 + 50}$
SA g	triangellikformighet =>
800	Sec SpE -> Sec = 2.80E
S A SpE	Noc. 100 = 2. Noe. 125 => No. = 2,5 No.
8 / VB.325	(2) => N _{8c} = 2,5.1,67- 4,17kN
8 = FL 8 = FL EA	Triangel Ukformighet =>
	$\frac{S_{A}}{200} = \frac{S_{BC}}{100} = > S_{A} = 2 \cdot S_{BC}$
S_= 5	$2 \cdot \frac{4.17 \cdot 10^{3} \cdot 100}{200 \cdot 10^{3} \cdot 12.6} = 0.0579 \text{ mm}$

